2022

(May/June)

ECONOMICS

(Honours)

(Mathematics for Economists)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

 (a) Distinguish between a function and a relation. Explain some of the different functions and their uses in Economics.

4+6=10

State and prove the associative law of set operations using the following sets: 5

$$A = (1, 2, 3, 4, 5, 6)$$

 $B = (2, 4, 5, 8, 9)$
 $C = (6, 8, 9)$

- The straight line passes through the 2. (a) point (1, -2) and makes the intercept on the x-axis which is double the intercept on the y-axis. Find the equation of the line. Also write down the gradient of 4+1=5 the line.
 - Find the equilibrium price and quantity (b) for the following market model:

$$Q_d = 20 - 3P$$
$$Q_s = -5 + 2P$$

between difference the Explain (C) homogeneous and homothetic functions with examples.

UNIT-II

the meaning of a 'skew Define (a) 3. symmetric' matrix with a suitable example.

For any 2×2 matrices A and B, prove that-

(i)
$$(A+B)' = A' + B'$$

3+3+3=9

(c) If

5

5

2

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

find A2 -5A+71.

Solve

method :

the following simultaneous equations using the matrix inversion

$$3x-2y+3z=8$$
$$2x+y-z=1$$
$$4x-3y+2z=4$$

In the Leontief input-output model, explain the concept of the input-output table and the use of the technical coefficient matrix. 3+3=6

UNIT-III

- Define 'limit of a variable' and 'limit of 3 a function'.
 - Evaluate the limit of the following 2+2+2=6 functions :

(i)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$$

(ii)
$$\lim_{x\to 0} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}$$

(iii)
$$\lim_{x \to -\frac{1}{2}} \frac{(x-1)(2x+3)}{(x+2)(3x+4)}$$

Given

$$f(x) = 4x + 3$$
 for $x > 4$ and $x < 4$
= $3x + 7$ for $x = 4$

6 Examine its continuity at x = 4.

6. (a) Find $\frac{dy}{dx}$ of the following (any four): $2\times4=8$

(i)
$$y = \frac{2x^3 - x^2 + x - 2}{x^2}$$

(ii)
$$y = e^{\sqrt{x^2 + 3x - 4}}$$

(iii)
$$y = (x^2 + 3)(2x^2 + 7)^3$$

(iv)
$$4x^2 + 2xy + y^2 = 12$$

$$(v) \quad y = x^{x+1}$$

22D/689

- (b) Given $z = x^3 e^{2y}$, find all the partial derivatives of the second-order and prove that $f_{xy} = f_{yx}$
- (c) If $u(x, y) = \log(x + y)$, then find the total differential of u.

- Briefly explain the concept of maxima and minima for a given function y = f(x). Also explain the point of inflection with the help of a suitable example.
 - Find the maximum and minimum values of the function $y = 4x + \frac{1}{x}$.
 - If total cost $C = 4x^3 3x^2 + 200x$, find the slope of both the AC curve and the MC curve when x = 2. Also interpret the meaning of the slope.

3

- 8. (a) In a perfectly competitive market, the total cost of a firm is given by TC = Q² -6Q+10 and the price of the product is 4 per unit. Find the profit maximising output. What are the corresponding values of MC and MR?
 5+2+2=9
 - (b) For the average revenue function, AR = 20-2Q, find the output level at which TR is maximum. Also show that elasticity of demand is equal to unity at this output level. 4+2=

UNIT-V

- (a) What is integration? Explain its uses in Economics. 1+2=3
 - (b) Find the integral of the following (any four): 3×4=12

(i)
$$\int \frac{2x+2}{(x^2+2x-10)^3} dx$$

$$(\bar{n}) \int \sqrt{x} \log x \, dx$$

(iii)
$$\int \sqrt[3]{3x+8} \, dx$$

(iv)
$$\int \frac{x^2-2}{(x-1)(x-2)} dx$$

(v)
$$\int (x+2)e^{5x}dx$$

10. (a) Prove that

$$\int_{1}^{3} (4x - x^{2} - 3) dx = \frac{4}{3}$$

- (b) Given demand function $Q = \sqrt{60 \frac{3}{2}P}$.

 Obtain consumer surplus when P = 16.
- (c) If D = 250 50P and S = 25P + 25 are the demand and the supply functions respectively, find the producer's surplus under equilibrium.
